3.3.53 \(\int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^5(c+d x) \, dx\) [253]

Optimal. Leaf size=186 \[ -\frac {2 b (3 A+5 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b^2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A b^4 \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {2 b^3 B \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 b^2 (3 A+5 C) \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}} \]

[Out]

2/5*A*b^4*sin(d*x+c)/d/(b*cos(d*x+c))^(5/2)+2/3*b^3*B*sin(d*x+c)/d/(b*cos(d*x+c))^(3/2)+2/5*b^2*(3*A+5*C)*sin(
d*x+c)/d/(b*cos(d*x+c))^(1/2)+2/3*b^2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+
1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/d/(b*cos(d*x+c))^(1/2)-2/5*b*(3*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d
*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 186, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {16, 3100, 2827, 2716, 2721, 2720, 2719} \begin {gather*} \frac {2 A b^4 \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {2 b^2 (3 A+5 C) \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}}-\frac {2 b (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b^3 B \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 b^2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(-2*b*(3*A + 5*C)*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]) + (2*b^2*B*Sqrt[Cos
[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*A*b^4*Sin[c + d*x])/(5*d*(b*Cos[c + d*x]
)^(5/2)) + (2*b^3*B*Sin[c + d*x])/(3*d*(b*Cos[c + d*x])^(3/2)) + (2*b^2*(3*A + 5*C)*Sin[c + d*x])/(5*d*Sqrt[b*
Cos[c + d*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx &=b^5 \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx\\ &=\frac {2 A b^4 \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {1}{5} \left (2 b^2\right ) \int \frac {\frac {5 b^2 B}{2}+\frac {1}{2} b^2 (3 A+5 C) \cos (c+d x)}{(b \cos (c+d x))^{5/2}} \, dx\\ &=\frac {2 A b^4 \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\left (b^4 B\right ) \int \frac {1}{(b \cos (c+d x))^{5/2}} \, dx+\frac {1}{5} \left (b^3 (3 A+5 C)\right ) \int \frac {1}{(b \cos (c+d x))^{3/2}} \, dx\\ &=\frac {2 A b^4 \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {2 b^3 B \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 b^2 (3 A+5 C) \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}}+\frac {1}{3} \left (b^2 B\right ) \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx-\frac {1}{5} (b (3 A+5 C)) \int \sqrt {b \cos (c+d x)} \, dx\\ &=\frac {2 A b^4 \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {2 b^3 B \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 b^2 (3 A+5 C) \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}}+\frac {\left (b^2 B \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 \sqrt {b \cos (c+d x)}}-\frac {\left (b (3 A+5 C) \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 \sqrt {\cos (c+d x)}}\\ &=-\frac {2 b (3 A+5 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b^2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A b^4 \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {2 b^3 B \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 b^2 (3 A+5 C) \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.49, size = 122, normalized size = 0.66 \begin {gather*} -\frac {(b \cos (c+d x))^{3/2} \sec ^3(c+d x) \left (6 (3 A+5 C) \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )-10 B \cos ^{\frac {3}{2}}(c+d x) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-10 B \sin (c+d x)-9 A \sin (2 (c+d x))-15 C \sin (2 (c+d x))-6 A \tan (c+d x)\right )}{15 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

-1/15*((b*Cos[c + d*x])^(3/2)*Sec[c + d*x]^3*(6*(3*A + 5*C)*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] - 10*
B*Cos[c + d*x]^(3/2)*EllipticF[(c + d*x)/2, 2] - 10*B*Sin[c + d*x] - 9*A*Sin[2*(c + d*x)] - 15*C*Sin[2*(c + d*
x)] - 6*A*Tan[c + d*x]))/d

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(804\) vs. \(2(214)=428\).
time = 0.94, size = 805, normalized size = 4.33

method result size
default \(\text {Expression too large to display}\) \(805\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x,method=_RETURNVERBOSE)

[Out]

-2/15*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b/sin(1/2*d*x+1/2*c)^3/(8*sin(1/2*d*x+1/2*c)^6
-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(72*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-36*A*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)
^4-20*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*si
n(1/2*d*x+1/2*c)^4+120*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-60*C*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti
cE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-72*A*cos(1/2*d*x+1/2*c)*sin(1
/2*d*x+1/2*c)^4+36*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^
2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-20*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+20*B*EllipticF(cos(1/2*d*x+1/2*c)
,2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-120*C*cos(1/2*d*x
+1/2*c)*sin(1/2*d*x+1/2*c)^4+60*C*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+24*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-9*A*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+10*B*cos(1/2*d*x+1/2*c)*si
n(1/2*d*x+1/2*c)^2-5*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2
*c),2^(1/2))+30*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-15*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4*b+sin(1/2*d*x+1/2*c)^2*b)^(1/2)
/(b*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)*sec(d*x + c)^5, x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.12, size = 223, normalized size = 1.20 \begin {gather*} \frac {-5 i \, \sqrt {2} B b^{\frac {3}{2}} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} B b^{\frac {3}{2}} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} b^{\frac {3}{2}} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} b^{\frac {3}{2}} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, {\left (3 \, A + 5 \, C\right )} b \cos \left (d x + c\right )^{2} + 5 \, B b \cos \left (d x + c\right ) + 3 \, A b\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/15*(-5*I*sqrt(2)*B*b^(3/2)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*I*sq
rt(2)*B*b^(3/2)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*(3*A +
5*C)*b^(3/2)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)))
+ 3*I*sqrt(2)*(3*A + 5*C)*b^(3/2)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c
) - I*sin(d*x + c))) + 2*(3*(3*A + 5*C)*b*cos(d*x + c)^2 + 5*B*b*cos(d*x + c) + 3*A*b)*sqrt(b*cos(d*x + c))*si
n(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)*sec(d*x + c)^5, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^5} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^5,x)

[Out]

int(((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^5, x)

________________________________________________________________________________________